A cooperative co-evolutionary LSHADE algorithm for large-scale global optimization

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In this paper, we propose the application of a Cooperative Co-evolutionary LSHADE (CCLSHADE) algorithm for Large-Scale Global Optimization (LSGO). We illustrate that by tuning two simple parameters of the CC framework, one can obtain very competitive results. The results are achieved without the need of incorporating local search modules, a re-initialization step, or adaptively configuring the CC framework budget allocation. The two parameters studied in this work are the number of iterations for which to run each sub-optimizer in a single cycle and the maximum size of the component containing the separable problem variables. The performance of CCLSHADE is compared against six state-of-the-art algorithms developed for LSGO using the CEC10 benchmarks. Experimental results and statistical tests confirm the competitiveness of the proposed algorithm.

Original languageEnglish
Title of host publication2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-8
Number of pages8
ISBN (Electronic)9781538627259
DOIs
StatePublished - 2 Feb 2018
Event2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Honolulu, United States
Duration: 27 Nov 20171 Dec 2017

Publication series

Name2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
Volume2018-January

Conference

Conference2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017
Country/TerritoryUnited States
CityHonolulu
Period27/11/171/12/17

Fingerprint

Dive into the research topics of 'A cooperative co-evolutionary LSHADE algorithm for large-scale global optimization'. Together they form a unique fingerprint.

Cite this