Generalized opposition-based artificial bee colony algorithm

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

57 Scopus citations

Abstract

The Artificial Bee Colony (ABC) algorithm is a relatively new algorithm for function optimization. The algorithm is inspired by the foraging behavior of honey bees. In this work, the performance of ABC is enhanced by introducing the concept of generalized opposition-based learning. This concept is introduced through the initialization step and through generation jumping. The performance of the proposed generalized opposition-based ABC (GOABC) is compared to the performance of ABC and opposition-based ABC (OABC) using the CEC05 benchmarks library.

Original languageEnglish
Title of host publication2012 IEEE Congress on Evolutionary Computation, CEC 2012
Pages3046-3049
DOIs
StatePublished - 2012
Event2012 IEEE Congress on Evolutionary Computation, CEC 2012 - Brisbane, QLD, Australia
Duration: 10 Jun 201215 Jun 2012

Publication series

Name2012 IEEE Congress on Evolutionary Computation, CEC 2012

Conference

Conference2012 IEEE Congress on Evolutionary Computation, CEC 2012
Country/TerritoryAustralia
CityBrisbane, QLD
Period10/06/1215/06/12

Fingerprint

Dive into the research topics of 'Generalized opposition-based artificial bee colony algorithm'. Together they form a unique fingerprint.

Cite this